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An explicit, second-order, two-level, time-integration scheme for calculating density- 
stratified incompressible flows is described. It is demonstrated that this method is stable 
for long-term integration with respect to time and that excellent conservation of mass, 
momentum, and energy has been achieved. Moreover, the small error that could occur 
in the total energy is nonaccumulative. The time-step splitting error, encountered in 
many second-order time schemes, does not arise in the present method when all the 
initial conditions are consistent with the implications of the basic equations of motion. 

1. INTRODUCTION 

A major consideration in studying the generation and propagation of internal 
gravity waves in a density stratified liquid, as in oceanic situations, is the energetic 
content of the wave system. Consequently, computational accuracy in terms of 
energy conservation, in addition to the conservation of mass and momentum, must 
be achieved when devising a finite-difference method for such applications. There 
exist a class of semiconservative finite-difference schemes [I-4] which conserve 
energy only in the absence of time-differencing errors [5]. In fact, difference schemes 
that semiconserve energy but that are unstable when leapfrog time-dBerencing 
is used have been reported by Kreiss and Oliger [6]. The key in these semiconserva- 
tion methods is in the careful construction of the difference representation of the 
convection terms. In the present application, however, the nonlinear convection 
terms play a minor role as the internal gravity waves are maintained primarily by 
the balance between local accelerations and the pressure gradient. Consequently, 
as the present author has found, whether one uses an energy conserving scheme 
for the convection terms has little effect on the solution of the present problem. 
Here they key obviously lies in time-differencing. 

The semiconservative scheme of Piacsek and Williams [4] has been used with a 
three-level leapfrog time differencing by Dugan, et al.[7], to study the collapse of a 
mixed region in a density stratified fluid. They reported the occurrence of “compu- 
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tational modes,” presumably the time-step splitting wherein two unrelated, dis- 
joint solutions develop which alternate at each time step [8]; the computational 
modes were suppressed by periodically averaging the numerical solution over 
adjacent time steps to avoid serious deviations from the correct solution. Their 
sample calculation was performed for 14 Brunt-VBisH11 periods. Although the 
total energy was conserved to within 5 % throughout that calculation, the most 
unsettling fact is that the total energy increased almost linearly at the rate of 0.31% 
per Brunt-Vaisiill period, as can be seen in Fig. 2 of their work. It seems that the 
solution might eventually produce significant error in total energy if the computa- 
tion was continued much longer. Thus, the absolute quadratic conservation prop- 
erty of the difference scheme for the convection terms has been overwhelmed by 
the property of the leapfrog time differencing. 

In this paper, we describe an explicit, second-order, two-level, time-integration 
scheme which has been found by extensive experiments to be free of the difficulties 
mentioned above. Specifically, this method produces nonsystematic error in total 
energy which remains less than 1 y0 throughout each run, in sharp contrast with the 
accumulative error reported in [7]. Also, time-step splitting error does not occur 
in the present procedure if a consistent set of initial values are prescribed at the 
initial time level t = 0. Thus, unlike the three-level leapfrog method, which raises a 
first-order continuum equation in time to a second-order difference equation in 
time, one need not worry about special starting procedures and their implications 
on the solution [9]. Results of sample calculations are included to illustrate the 
properties of the present technique. 

2. THE SOLUTION PROCEDURE 

Consider the two-dimensional, time-dependent motion of a density stratified 
fluid, for which the stable equilibrium density profile p,, is a function of the vertical 
coordinate y only. Let (x, JJ) be the rectangular Cartesian coordinates and (u, u) 
the corresponding components of the fluid velocity. With the usual Boussinesq 
approximation [lo], namely, that the effect of density variation need only be ac- 
counted for in the buoyancy term, the equations of motion for an inviscid, incom- 
pressible fluid are 

Ut = -Ru2), + k9, + $k!> (1) 

ut = -{Wz + (02), + k/P *) P’ + d?J> (2) 
Pt’ = -W’)n + ha + h)zl4 (3) 

24, + v, = 0 (4) 

where 4 E p/p* (p is the fluid pressure less the hydrostatic contribution and p* is 
a constant, reference density, e.g., the average density of the fluid considered), g is 
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the gravitational acceleration, and p’ = p(x, y, t) - p,,(y) is the density deviation 
from the undisturbed value. In the equations above, subscripts imply partial 
differentiation. 

The convection terms in Eqs. (l)-(3) have been written in conservation form so 
that the linear quantities U, u, and p’ are rigorously conserved when they are 
replaced by a suitable difference scheme. Although a difference scheme with the 
property of conserving quadratic quantities absolutely [4], i.e., in the absence of 
time-differencing error, could be used to calculate the convection terms, we use the 
usual central difference for the reason that the physical system to be studied is 
governed by the balance between the local acceleration and the pressure gradient. 
In such a system, truncation errors in convection terms have negligible effects on 
the solution, but the presence of linear “stiff terms,” i.e., p’ in Eq. (2) and o in 
Eq. (3), requires a careful treatment in time integration. Experience shows that a 
simplistic, explicit, first-order, forward time scheme is unstable, while implicit 
treatment of the stiff terms dissipates the energy artificially. Since the three-level 
leapfrog time-differencing scheme has the difficulties discussed in the previous 
section, we are led to look for an alternative way of formulating a second-order 
time scheme. 

Differentiating each term in Eqs. (l)-(3) with respect to the time t, we have 

Utt = -@a‘ - (w + U%)Y - $ht (5) 

utt = -(w + WL - m4, - (g/p*) Pt’ - +,t (6) 

Pit = -GhP’ + wt’>z - ct.+ + t’pt’), - (PI& Ct . (7) 

FIG. 1. Position of flow variables; (1) u~+(~/~),~ (2) ZJ~.~+(~/~) and p:,j+cl,z, (3) ui-ww (4) h-(I/Z) 
and P;,~-,~I~~ . 
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To implement a finite-difference solution procedure, the fluid domain of interest 
is divided into many rectangular subregions, or cells, as shown in Fig. 1. Each cell 
has the dimensions 6x by 8~. Associated with each cell, 4 is defined at the cell center, 
u is evaluated at the midpoint of the left and right edges of the cell, and u, as well 
as p’, is defined at the midpoint of the top and bottom edges of the cell. Simple 
averaging is used to obtain values where they are not formally defined. 

Since we have an initial-value problem, the values of U, u, 4, and p’ must be given 
at their points of definition at some initial time t = 0. Subsequently, the finite- 
difference representations of the governing equations are used to advance these 
quantities with respect to time. Letf” be any of these quantities evaluated at the 
time t = tn andf”+l be the same quantity at t = P+l, where tn+l - tn = St is the 
positive time increment. Then, using Taylor’s series expansion in St we have 

f n+l =f” + St&)” + (W/2!)(&)” + O(W) (8) 

which provides the basis of an explicit, second-order, time-integration procedure. 
A similar temporal expansion was used by Gazdag [l l] who related the temporal 
derivatives to spatial derivatives. Serious difficulties arise in Gazdag’s approach, 
because the time-expansion process adds requirements for additional boundary 
conditions on spatial derivatves which are not present in the original differential 
equations. In the present approach, instead of translating temporal derivatives 
into spatial derivatives, the quantities ut , z+ , and pt’ are regarded as auxiliary 
dependent variables for which appropriate boundary conditions can be found 
naturally from the physical problem. Discussion of boundary conditions will be 
given later. In the mesh system shown in Fig. 1, ut , vt , and pt’ are defined at the 
same locations as are U, U, and p’, respectively. 

To get to the heart of the computational procedure, it is best to examine the 
finite-difference equations in detail. Suppose central difference is used for evaluating 
spatial derivatives, e.g., #Z at the location (i + (l/2),3 (Fig. 1) is written as 

The mixed derivatives & and q3yt , appearing in Eqs. (5) and (6), are represented 
by 

(d.X+(1,2Li = KhJin++(:,2),i - (bJL(112d~t + WN 
(10) 

It can be shown by Taylor series expansion that these approximations for rjzt 
and I$,~ contain truncation errors of the order St in time. However, when these 
expressions are used in Eqs. (5) and (6), which are in turn substituted into Eq. (8), 
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wherefis replaced with u or o, these truncation errors are of the order (&)3, owing 
to the factor (&)*/2!. Thus, with Eq. (10) the formal accuracy of the present method 
is consistently second-order in St for all variables involved. 

Substituting Eqs. (1) and (5) into Eq. (8), for the location (i + (l/2), j), we get 

(Ut)in+(lPZ),j = - iC”<l,j - $ai)/sX + (“in,(l/z),i+(l12)uin,(1/2),i+(1/2) 

- Uin,(1/2),i-((112)21~++(1/2),i-(112))lS~ + (4ztl.j - #mw~ (12) 

Similarly, we can combine Eqs. (2), (6), and (8) to give 

n+l 
Q+(1/2) = “L+h,e) + WtL+(1/2) 

- (S12/2>{[(Ut)in+(l12),j+(l12)“in+(l12),i+(1/2) + ~~+(1/2).j+(li2)(~t)~++l/2).j+(l~2) 

- (ut)~-(-(1/2),i+(1/2)uin_(l/2),j+(1/2) - u~-“_(,~2~,~+~112~~2)t~~-E--(~/2~,~+~~/2~Ilsx 

+ PG+1mi+, - 24xa,aJ + (df*)(ft’xi+(ll2)~ 

+ (WWK?,, - Kj>/SY - ww~~~1 - KWY (13) 

where 

(u&+(1/2) = - ~(“i=(1/2),j+(1/2)u~++(1/2).i+(1/2) - ~~-_(1/2),~+(1,2)~‘~-_(1/P),~+(li2))l~x 

+ ($5+1 - 4wY + (g/f*)(p’):i+(l,2) + (Kj+* - CiwSY>. (14) 

Also, Eqs. (3) (7), and (8) give 
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where 

(Pt%+(1,2) = - ~(~~+(1,2),i+(l/2)P~n+(1/2),~+(1,2) - ~~-l_l/2),~+(1/2)f~~(112),~+(112))/~X 

+ (45+1PG+1 - cfJ~~)/~Y + [(Po>rli.i+(1,2)~~~+(1,2~~. 

Finally, Eq. (4) is written in the familiar form 

(16) 

W&2).~ - 4%2d~x + K.L2) - “Z~(l,2))/~Y = 0. (17) 

As in the MAC class of methods [12], a Poisson equation for the new pressure 
p+l can be obtained by the following procedure. First, Eqs. (11) and (13) are cast 
in the form 

a+1 
h+(1/2),i = G+(1/2).i - c-ww:::j - K3P~ 

43,2),j = Ji-(I,Z).j - (w2)(4F,~1 - +,“_:‘,i)/sx 
(18) 

n+1 
%j+(l/z) = %j+(1/2) - @Gw~,~L - K;wY 

“r,31,2) = %-(I/,) - @/W~T,~ - ~~,;3PY 

where the tilde quantities depend on information at the nth time level only. Sub- 
stituting these expressions into Eq. (17), we obtain the desired Poisson equation: 

= wwNu’i+(I,2,*~ - L(Il2LiPX + @i.i+(u2) - ~i,~-(,,2MYl. (19) 

Each computation cycle consists of the following steps: 

1. From the known @, on, p’“, and @, calculate (u$, (z@, and (pt’)” 
according to Eqs. (12), (14), and (16), respectively. 

2. Calculate 1 and B, which can be deduced from comparing Eq. (18) with 
Eqs. (11) and (13). 

3. Calculate and store the source term, i.e., the right side, of Eq. (19). Then, 
solve the pressure field @:’ by using either a direct solver or some iterative 
procedure [8]. 

4. Obtain final values for nn+l and yn+l, using Eq. (18). 

5. Calculate (~‘)~+l by (15). 

Now that we have complete space distributions of @+l, @+I, (~‘)~+l, and p+l 
at t = tn+l, the foregoing procedure may be repeated to update the flow field 
further. 

581/22/I-6 
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In addition to the equations governing the motion in the interior of the fluid, 
it is also necessary to specify boundary and initial conditions. Correct treatment 
of these conditions is of vital importance in the present second-order time scheme. 

3. BOUNDARY AND INITIAL CONDITIONS 

Consider the situation shown in Fig. 2, i.e., the motion of a stratified fluid in a 
box with rigid walls. The condition that the normal velocity of the fluid vanish 
at a rigid wall is met by specifying u = 0 along AD and BC, and u = 0 along 
AB and CD. The way variables are defined (Fig. 1) in the present mesh system does 
not require the knowledge of p’ or v along AD and BC, nor the specification of u 
along AB and CD. If p’ is zero initially along the horizontal rigid boundaries AB 
and CD, then it remains zero there for all times, according to Eq. (3). Also, we 
have 4% = 0 along AD and BC, by applying ut = 0 in Eq. (1). Similarly, & = 0 
along AB and CD. These Neumann conditions on I$ are imposed during the itera- 
tive solution of I#P+~. 

2 .:.y.::. ., 
d :.::.:-.:::, r: 

_.:..,, . . . s” 
$ 

@ 

.;..’ :.::.::.;::: ..: ,.._ :::;:.;,::. ‘j ..; ;:,;: ..;;.. I% 
1 . .._ _..’ 4‘ 

Disturbance 

FIG. 2. Rigid boundary conditions. 

In the present method it is also necessary to impose boundary conditions on the 
first temporal derivatives. These are simply: ut = 0 along AD and BC, vt = 0 
along AB and CD, pt’ = 0 along AB and CD if p’ = 0 there initially. 

A set of initial values for u, v, p’, and 4 are required to begin the numerical 
integration. These quantities cannot be prescribed arbitrarily. Obviously, the u and 
v distributions must satisfy the continuity equation (17). Another consistency 
requirement is more subtle. Suppose the initial velocity field does satisfy the con- 
tinuity equation and the initial distribution of p’ is specified. Then, the initial 
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distribution of the dynamic pressure 4 cannot be assigned at random. To see this, 
Eqs. (12) and (14) can be written as 

and, by taking time derivative of each term and applied at the initial instant t = 0, 
Eq. (17) becomes 

K~t)i+(l,,t.~ - W-(~/d~X + K%h+(llz) - mi.~-cllz,ll~r = 0. (21) 

In Eqs. (20), A and B represent those terms that do not involve $, and all the vari- 
ables are evaluated at t = 0. Now, by substituting the expressions (20) into Eq. 
(21), we have 

= Vi+w,j - &(m),J/~x + (%+(m) - Bi.~,dlh (22) 

subject to the boundary conditions: 4. = 0 on AD and BC and & = 0 on AB and 
CD. Eq. (22) is, again, a Poisson equation which can be solved by standard proce- 
dures to produce the initial 4 distribution which is consistent with the prescribed 
U, v, and p’ distributions. 

As an example, suppose we choose as initial conditions u = v = 0 everywhere 
in the (x, y) plane, thus satisfying Eq. (17), and p’ = 0 except in the disturbed 
region (Fig. 2). Then A = 0, B = -(g/p*) p‘, and the right side of Eq. (22) reduces 
to 

which indicates that the initial 4 = 0 would be incompatible with the basic govern- 
ing equations in this case. The consequence of using an inconsistent initial + 
distribution is the time-splitting behavior of the solution which will be discussed 
in Section 5. 

4. NUMERICAL STABILITY 

A rigorous linear stability analysis has not been performed for the present 
method. In many applications the velocities u and u associated with the internal 
waves are so small that the maximum St is limited by the characteristic time of the 
problem, i.e., the Brunt-VBisiilH period (BV). It has been found that St = & BV 
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gives very satisfactory results. As will be shown shortly, the excellent stability 
property of the present method is evidenced by the nearly perfect conservation of 
energy. 

5. SAMPLE CALCULATIONS 

Throughout the present discussion, variables are made dimensionless by the 
following rules. All lengths are normalized by D, the initial diameter of the disturbed 
region (Fig. 2). Accelerations are normalized by g, and, consequently, all velocities 
are measured in terms of (gD)liz. Finally, the density p is normalized by p*. 

Several numerical experiments have been performed to demonstrate the proper- 
ties of the present method. Consider a two-dimensional domain consisting of 
30 x 30 cells. As illustrated in Fig. 2, rigid boundaries are used in this example. 
At t = 0 we prescribe the density deviation 

$ = -(po), (y - yo) e-0.693w/r*)’ (23) 

where (po)v = -0.003134, y, is the ordinate of the center of the square domain, r is 
the radial distance from that center, and r* = 0.5 is the half-strength radius of the 
disturbed region. The Brunt-ViiisiilI frequency is N = (-( g/p*)(p,,)l,)l~z. Also, 
we take u = v = 0 everywhere initially. Because the fluid particles seek their own 
level in the undisturbed ambient density structure, fluid motions and radiation of 
internal waves start. When these waves reach the rigid boundaries, complex 
phenomena of reflection will occur. 

The conservation of momentum is guaranteed in the present method, because 
the convection terms in the momentum equations are written in the flux form. We 
only have to examine the conservation of mass and energy, which is not obvious 
from the form of finite-difference equations. The conservation of mass requires 

ss p’ dx dy = constant = ss PO’ dx du (24) 

where pO’ is p’ evaluated at t = 0, and the double integral covers the entire domain. 
Thus, the relative error in mass conservation can be defined as 

E, = 1 .f.b’dxdy - ho’dxdy 
.f.f PO(Y) dx & I ’ (25) 

It can be shown [13] that the potential energy in a stratified fluid with constant 
(p& is given by 

Is 
(p’)” dx dy (26) 
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and the kinetic energy is 

KE = $ jj” p(u2 + v2) dx dy. 

The total energy TE is the sum of PE and KE. Now we can define the relative error 
in total energy as 

ETE = TE - (TE), 
(TEh W) 

where (TE), is evaluated at t = 0. 
The computation has been continued for 500 time steps, corresponding to five 

Brunt-VLisalilH periods. The cell size is 6x = 8~ = 0.1 and 0.2 in Cases I and II, 
respectively, and 6t = 1 % of the Brunt-VGsSil% period. In Case II, 60 x 60 cells 
are used so that the linear dimension of the computational domain is four times 
that of Case I. Table I summarizes the relative errors in the conservation laws. 
Note that even with a poor spatial resolution, such as Case II, the energy conserva- 
tion has only 0.4 % maximum error throughout the entire computation. More 
importantly, this small error in energy does not grow with respect to time; the 
amplitude of the error can be made smaller by reducing the time step. 

TABLE I 

Case1 
(30 x 30cells) 

Case II 
(60 x 60cells) 

0.10 1.5 x lo-’ 3.5 x IO-3 

0.20 1.5 x 10-1 4.0 x 10-S 

The effect of using incorrect initial rj distribution, which was discussed in Section 
3, has also been investigated. The contour plot of the correct initial &field for 
Case I, obtained by solving Eq. (22), is shown in Fig. 3. It has been found that if 
4 = 0 is used as initial condition, which is incompatible with the other initial 
conditions, namely, u z= u = 0 and p’ # 0, then a noticeable oscillation between 
time steps occurs in the solution, particularly in the total energy. Time-splitting 
error does not arise when the correct initial I# is used. 

It is quite interesting to see how the partition between kinetic and potential 
energies evolves in an inviscid stratified fluid with initial disturbance described by 
Eq. (23). Consider Case I where the size of computation domain is only 3 x 3. 
At t = 0, the total energy consists entirely of the potential energy, because u = v = 
0. As the fluid particles return to their own density levels, motion starts and some 
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FIG. 3. Contours of +-field at t = 0 for Case I. The symbol Hrepresents Q = 0.002985 and 
L represents 4 = -0.001514. The contour interval is A$ = 0.000214. 

0 

Downslieom position, in Viiis’hlij permls, Ni/2n 

FIG. 4. Energy partition for case I. The solid line indicates the potential energy divided by 
the total energy, while the dash line is the kinetic energy divided by the total energy. 

of the potential energy is converted into kinetic energy. Figure 4 shows the time 
history of energy partition. Equal partition of energy is quite evident even though 
wall reflections severely interfere with the flow field. In Case II, where the computa- 
tional domain is considerably larger, the effect of wall reflections is delayed. 
Again, as shown in Fig. 5, equal partition of energy is found. Moreover, because 
of the absence of reflections at early times the pattern of the energy curves in this 
case is very different from that of Case I. 
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0 1.0 2.0 3.0 4.0 5.0 
Downslream position, in VBisal6 periods, NtlZu 

FIG. 5. Energy partition for case II. The solid line indicates the potential energy divided 
by the total energy, while the dash line is the kinetic energy divided by the total energy. 

6. CONCLUSIONS 

An explicit, second-order, numerical, time integration method for calculating 
the motion of an incompressible, stratified fluid has been developed. It has been 
demonstrated that this method is stable for long-term integration with respect to 
time and that mass, momentum, and energy are very well conserved. Moreover, 
the small error in the total energy is nonaccumulative. 
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